Automate Machine learning

机器学习自动化

Posted by Jing on February 7, 2022

A collection of machine learning optimization toolkits.

A simple introduction for Hyperparameter Optimization.

⭐ AutoKeras

🧰 AutoKeras: An AutoML system based on Keras.

⭐ KerasTuner

🧰 KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in.

⭐ Talos

🧰 Hyperparameter Optimization for Keras, TensorFlow and PyTorch.

⭐ AutoGluon

🧰 AutoGluon: AutoML for Text, Image, and Tabular Data.

⭐ Ray Tune

🧰 Tune is a library for hyperparameter tuning at any scale.

⭐ Optuna

🧰A hyperparameter optimization framework.

⭐ BOHB

🧰 BOHB: Robust and Efficient Hyperparameter Optimization at Scale.

⭐ HpBandSter

🧰 A distributed Hyperband implementation on Steroids.

⭐ Hyperopt

🧰 Distributed Asynchronous Hyper-parameter Optimization.

⭐ HiPlot

🧰 High dimensional Interactive Plotting.

⭐ Polyaxon

🧰 A platform for building, training, and monitoring large scale deep learning applications.

⭐ Bayesian Optimization

🧰 Pure Python implementation of bayesian global optimization with gaussian processes.

⭐ SHERPA

🧰 SHERPA: A Python Hyperparameter Optimization Library.

⭐ Scikit-optimize

🧰 Sequential model-based optimization.

⭐ GPyOpt

🧰 A Python open-source library for Bayesian Optimization(Maintenance terminated).

Reference: 10 Hyperparameter optimization frameworks (Towards Data Science).